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ABSTRACT 

The phase matrix in scalar radiative transfer is symmetric that grants reciprocity principle in 

radiative transfer. The reciprocity principle is so useful that one may compute a single transmission 

matrix and a single reflection matrix for a homogeneous medium regardless of in upward or 

downward direction. The symmetric phase matrix is also important as one only needs to solve for a 

real eigensolution. An eigensolution is often used in a radiative transfer solver because of its high 

computational efficiency. However, the phase matrix in vectorized radiative transfer is generally not 

symmetric which challenges the reciprocity principle and forces us to deal with a complex 

eigensolution that requires a major effort in computational coding tangent-linear and adjoint models. 

This paper introduces an approach to retain the reciprocity principle in radiative transfer and applies 

a Taylor expansion of analytic transmittance and reflection matrices for a base optical depth together 

with a doubling-adding method beyond the base in the vectorized Community Radiative Transfer 

Model (CRTM). The value of the base optical depth depends on the maximum absolute value of the 

phase matrix elements. In comparison with other forward radiative transfer models, the extended 

vectorized CRTM agrees well with those models. The computational efficiency among the CRTM 

and those models is comparable. The tangent-linear and adjoint modules of the vectorized CRTM 

can be used for assimilating microwave, infrared, visible and ultraviolet sensor radiances. 

1. INTRODUCTION 

A computationally efficient and accurate radiative transfer (RT) model is needed in radiance 

assimilation for supporting weather forecasting, physical retrievals for satellite environmental data 

records, and verification and inter-comparison among remote sensing instruments. There are many 
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components needed by radiative transfer models: gaseous absorptions, molecular, aerosol and cloud 

scattering, and surface emission and reflection as well as radiative transfer solvers. In this paper, we 

focus on radiative transfer solvers. A treatise on radiative transfer theory is given in the book by 

Chandrasekhar [1]. Radiative transfer theory has been widely applied for studying the Earth’s 

atmosphere from space [2][3]. Radiative transfer theory provides the physical foundation for 

understanding the radiation budget at the Earth’s surface and at the top of the atmosphere, climate 

change, and radiative cooling and heating rates of the atmosphere. Many radiative transfer solvers 

have been developed [4][5][6]. Some standard computational procedures are described in the book 

[2][7]. 

The matrix operator method (MOM) [8] is one of early accurate models in FORTRAN for radiative 

transfer. The doubling-adding (DA) method [9][10] was developed many years ago, but is still very 

valuable and accurate. We use the DA method as a reference model in developing our community 

radiative transfer models. VLIDORT [11] was developed as a vectorized radiative transfer code for 

forward model and retrieval studies in multiple scattering media. Matrix formulations of radiative 

transfer including the polarization effect in a coupled atmosphere-ocean system has been published 

[12]. Recently, Efremenko et al. [13] have reviewed the matrix-exponential formalism in radiative 

transfer. During the process of developing the community radiative transfer model, a polarized 

Delta-4-stream model for thermal and microwave radiative transfer has been studied by Liou et al. 

[14] at the University of California at Los Angeles. The successive order of interaction (SOI) 

radiative transfer model was developed by Heidinger et al. [15] at the University of Wisconsin. 

The SOI algorithm enhances the computational efficiency of successive order of scatterings [16]. 

Direct ordinate tangent linear radiative transfer (DOTLRT) has been developed by Voronovich et al. 
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[17]. A simplified vector discrete-ordinate radiative transfer method has been developed by Weng 

and Liu [18]. We have also developed the advanced doubling-adding method (ADA) [19] and 

advanced matrix operator method (AMOM) [20]. All radiative transfer codes above are very 

accurate and valuable. The decision to use which model for satellite radiance assimilation is more 

about heritage, maintenance, consistency among forward and tangent-linear as well as adjoint 

models, and further development. In radiance assimilation, tangent-linear and adjoint models are 

needed [21]. Coding standards within the organization can play an important role as well. 

The Community Radiative Transfer Model (CRTM) was developed for un-polarized scattering 

atmosphere. The polarization calculation in the CRTM currently comes from polarized surface 

emissivity and reflectivity. However, un-polarized natural light can be polarized by scattering from 

molecules, aerosols and clouds, and by the reflection and scattering from surfaces [22]. The 

polarization of light in the atmosphere-surface system contains important signals that have led to 

major scientific breakthroughs that could not have been achieved by only studying scalar radiance 

[23][24][25]. The polarization measured by microwave sensors provides unique information to 

calculate the sea surface wind speed [26], sea surface wind vector [27], and sea ice [28]. The French 

satellite-based POLarization and Directionality of the Earth Reflectance (POLDER) instrument has 

been used to obtain the particle shape of ice clouds [29]. 

Like Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV), CRTM is operationally 

used in radiance assimilation in supporting daily weather forecasting at numerical prediction centers. 

Both RTTOV and CRTM are required to have forward, tangent-linear, adjoint, and K-matrix or 

jacobian models. Radiance tangent linear model provides a computationally efficient way to 

calculate radiance increments (a vector of the number (N) of sensor channels) for given control 
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variables with their perturbations. The adjoint model is a very efficient tool to compute the gradient 

of the cost function. In radiance assimilation, the cost function measures the departure of control 

variables from background (e.g. 6h forecasting) and the difference between observed radiances and 

simulated radiances by using the control variables. The gradient of the cost function with respect to 

the control variable (initial condition) is obtained by a backward integration of the adjoint model. 

Adjoint radiative transfer model outputs integrated radiance sensitivities (a vector of the number (M) 

of control variables) on control variables while K-matrix or jacobian outputs channel-dependent 

radiance sensitivities (a matrix of M x N) on control variables. ECMWF uses adjoint model and 

tangent-linear model in four-dimensional radiance assimilation. For retrieval algorithms, one-

dimensional variation method and jacobian radiances are often used since the memory usage for a 

single profile is not a big deal. 

Recently, radiance assimilation has moved forward to cloudy radiance assimilation. Under 

precipitation, neglecting polarization effects from rain drops may result in an error of several 

Kelvins for the polarized brightness temperatures [30]. The CRTM is also requested to assimilate 

ultraviolet radiation measured by total ozone mapper and nadir profiler. It demands significant effort 

to write the tangent-linear and adjoint modules for a forward model. This is a major motivation for 

us to extend the current CRTM to a vectorized radiative transfer, because current CRTM is 

operational and has forward, tangent-linear, adjoint, and K-matrix or jacobian modules. We first 

extend the CRTM ADA for vectorized forward, tangent-linear, adjoint, and K-matrix or jacobian 

radiative transfer calculations since the extension requires small effort, basically changing the array 

size. In our previous studies, we noticed that CRTM AMOM has better computational efficiency 

than CRTM ADA. However, the real eigensolution in CRTM AMOM has to be changed to the 

complex eigensolution for the vectorized radiative transfer in general. This would require 

5 



 

 
 

 

 

 

             

                

              

               

   

 

               

              

         

 

     

             

              

              

            

             

               

               

              

               

                

             

substantially effort in writing tangent-linear and adjoint modules. Therefore, we use a compromised 

approach here: a Taylor expansion of analytic solutions in CRTM AMOM for a base optical depth 

and together with a doubling-adding method beyond the base in the CRTM vectorized radiative 

transfer. This avoids using the complex eigensolution and adds an alternative way in the radiative 

transfer family. 

In the following sections, we will introduce the CRTM model and discuss the radiative transfer 

solvers. We have set up benchmark numerical experiments and compared the results using DA, 

VLIDORT, extended CRTM ADA and CRTM AMOM algorithms here. 

2. COMMUNITY RADIATIVE TRANSFER MODEL 

The Community Radiative Transfer Model (CRTM) is a sensor-based radiative transfer model. It 

supports more than 100 sensors including sensors on most meteorological satellites and some from 

other remote sensing satellites. The CRTM is composed of four important modules for gaseous 

transmittance, surface emission and reflection, cloud and aerosol absorption and scatterings, and 

solvers for radiative transfer. The CRTM was designed to meet Numerical Weather Prediction 

(NWP) and other users’ needs. Many options are available for users to choose: input surface 

emissivity; select a subset of channels for a given sensor; turn off scattering calculations; compute 

radiance at aircraft altitudes; compute aerosol optical depth only; and threading of the CRTM. 

Figure 1 shows the interface diagram for users (public interface) and internal modules for developers 

contained in the lower dashed box. The CRTM forward model is used to simulate from satellite 

measured radiance, which can be used to verify measurement accuracy, uncertainty, and long-term 
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stability. The K-matrix module is used to compute Jacobian values (i.e. radiance derivative to 

geophysical parameters), which is used for the inversion processing in retrieval and radiance 

assimilations. Tangent-linear and adjoint modules are also often applied to radiance assimilation. 

The CRTM is a FORTRAN library for users to link to their own code, instead of a graphic user 

interface. At the CRTM initialization, user selects the sensor/sensors and surface 

emissivity/reflectance look-up tables. Developers may incorporate their own expertise into the 

CRTM for any desired applications. The gaseous transmittance describes atmospheric gaseous 

absorption, so that one can utilize remote sensing information in data assimilation/retrieval systems 

for atmospheric temperature, moisture, and trace gases such as CO2, O3, N2O, CO, and CH4 [31]. 

The aerosol module is fundamental to acquire aerosol type and concentration for studying air 

quality. The cloud module contains optical properties of six cloud types, providing radiative forcing 

information for weather forecasting and climate studies. The CRTM surface model includes surface 

static and atlas-based emissivity/reflectivity for various surface types. Two radiative transfer solvers 

have been implemented into the CRTM. The advanced matrix operator method (AMOM) [20] is 

chosen as a baseline. The successive order of interaction (SOI) radiative transfer [15] developed at 

the University of Wisconsin, has also been implemented in the CRTM. 

3. RADIATIVE TRANSFER EQUATION AND SOLVER 

The CRTM is a one-dimensional radiative transfer model [19]. This implies that the atmosphere is 

assumed to be homogeneous in the horizontal direction, a so called plane-parallel atmosphere. Due 

to the consideration of computational burden and memory usage 15 years ago, scalar radiative 

transfer solvers were implemented in the CRTM, although the CRTM interface has been designed 
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for  both  scalar  and  vectorized  radiative  transfer  solvers.  The  scalar  radiative  transfer  model  is  an  

approximation  [32].  In  visible  and  ultraviolet  spectra,  radiative  transfer  calculations  that  utilize  the  

scalar  approximation  produce  intensity  errors  as  large  as  10%  [33][34].  The  scalar  approximation  

may  be  used  for  infrared  radiative  transfer  calculations  and  microwave  radiative  transfer  calculations  

without  precipitations.  

We  will  briefly  discuss  the  current  CRTM  default  solver  the  advanced  matrix  operator  method  

(AMOM).  Since  the  doubling-adding  part  is  used  in  the  CRTM  solver  SOI,  we  extended  both  the  

doubling-adding  method  (ADA)  and  analytic  matrix  operator  method  (AMOM)  to  vectorized  

radiative  transfer  solvers.   

3.1  Scalar  radiative  transfer  

For  the  plane-parallel  atmosphere,  a  scalar  radiance  �  at  a  given w avelength c an b e  written a s  [19]:   

� � �(�,�) = �(�, �) − � � � (�, �, ��)�(�, ��)� �� − �(�, �, ��) ,  (1)  �� ��
where  the  source  function i s:  

#"�(�, μ, �, μ , � ) = ( − )   � � 1 �)�(� + �� �(�, μ, �,−μ�, ��) ! $  .  (2)  �� 
Here  �  the  cosine  of  the  viewing  zenith  angle;  �  the  viewing  azimuthal  angle;  μ�  the  cosine  of  Sun  

zenith  angle  and  ��  the  Sun  azimuthal  angle;  �  the  single  scattering  albedo;  � the  optical  depth;  

�(�)the  Planck  function  at  a  temperature  �;  %�  the  solar  irradiance;  �  the  phase  function;  and  �  the  

radiance.  Positive  µ  and -  µ  represent  upward a nd  downward d irections,  respectively.  

The  first  term  on  the  right  side  of  Eq.(2)  is  isotropic  thermal  emission,  which  means  only  the  zeroth  

order  Fourier  component  has  a  non-zero  value.  The  second  term  on  the  right  side  of  Eq.(2)  is  diffuse  
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solar  radiation.  One  may  remove  this  diffuse  solar  radiation  by  adding  direct  incoming  solar  

radiation  at  the  top  of  the  atmosphere  as  a  boundary  condition  [31].  There  are  various  ways  to  solve  

the  radiative  transfer  equation,  depending  on  specific  applications.  One  of  the  ways  is  to  decouple  

the  azimuth  angle  from  the  zenith  angle  by  the  expansion  of  the  scalar  radiance  and  the  phase  

function a s  a  series  of  cosine  function o f  the  azimuth a ngle,  These  are:  

�(�, μ, �,  μ� , �� ) = ∑ ' )�,*,*+, 4"- (56� 0123(�� − �)  (3a)  -./  ( �( �, μ, �) = ∑4"-56� �5( �, μ)012 3(�� − �)  (3b)  

Inserting  Eqs.(3a,b)  into E q.(1)  and u sing  a  discrete  ordinate  method f or  the  zenith a ngle,  we  obtain  

N  independent  equations  on  Fourier  components.   

� �5( �, �7) �5( �, �7) �5) �, �7, �;, �5) �, �7, −�;, �5) �, �;,�7 8 9 = 8 9 − �∑4 : < : < = −�� −�5( �, −�7) �5( �, −� ) ;6-7 �5) �, −�7, �;, �5) �, −�7, −�;, �5) �, −�;, ;
�5( �, �7, −μ8 �) 9 �5( �, −�7, −μ�)   (4)  

Where  �7  >?� =7  are  Gaussian q uadrature  points  and w eights  for  the  zenith a ngles.  For  simplicity,  

we  omit  the  subscript  m  unless  otherwise  specified.  

For  the  scalar  and t he  first  two c omponents  of  the  Stokes  vector,  we  know  from  the  reciprocity  

principle  of  radiative  transfer  [4][6][33][35]:  

 �)�7, �;, = �)−�7, −�;,   (5a)  

and  

 �)�7, −�;, = �)−�7, �;,   (5b)  

Then th e  2 b y  2 p hase  matrix  is  symmetric  and E q.(4)  may  be  simplified a s:  
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� �5( �, �7) � ( �, � ) � ) �, � , � , � ) �, � , −� , � ) �, � ,�7 8 9 = 8 5 7 9 − �∑4;6- : 5 7 ; 5 7 ; < : 5 ; < =; −�� −�5 (�, −� 7 ) �5 (�, −� 7 ) �5) �, �7 , −�;, �5) �, �7, �;, �5) �, −�;,� � , μ )8 5( , �7 − � 9 �5( �, −� ,   (5c)  7 −μ�) 
By  arranging  Gaussian  quadrature  points,  Eq.(5c)  for  each  Fourier  component  in  upward  and  

downward  directions  can  be  written  in  a  matrix-vector  form  as  (The  subscripts  u  (d)  indicate  upward  

(downward)  directions,  respectively):  

"- # "-� @ @ D E " D H8 A9 = −B 8 A9 − (1 − �)�(�) C F G − �� ! $ 8 D 9@ 6a�� @  ,  ( )  � � −D"-E �5 � −D"-HI 
and   

BB = 8 JJ BJK 9 −B   (6b)  KJ −BKK 
E is  a  vector  of  N  elements  with t he  value  of  1.  Using  Eqs.(5a-b)  for  the  scalar  radiative  transfer,  we  

can le t  

BJJ = BKK =  L   (7a)  

BJK = BKJ =  M   (7b)  

The  sub-matrices  BJJ, BJK,BKJ, BKK ,  are  symmetric  and w e  can r ewrite  Eq.(6b)  as  

L MB = 8 9 −M −L   (7c)  

L and  M are  N x N  matrices  and t heir  elements  are  given b y:  

N)�7, �;, = O��)�7, �;,�)�7, �;,=; − G7;P/�7   (7d)  

R)�7, −�;, = ��)�7, −�;,=;/�7   (7e)  

HD  and  HI  are  vectors  with th e  elements  �A(�7) = �(�7, −��) and  ��(−�7) = �(−�7, −��).  
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  G7;  is  the  Kronecker  delta.  D   is  a  diagonal  matrix  with  diagonal  elements  D = S�-, �T, …… , �4V.  In  

order  to  get  the  solution  at  a  specific  zenith  angle,  one  can  add  cosine  of  a  given  zenith  angle  (e.g.  

satellite  zenith a ngle)  with z ero  weight  to t he  Gaussian q uadrature  form a bove  [10].  The  solution a t  a  

given  zenith  angle  will  just  be  an  element  within  the  homogeneous  solution,  similar  to  the  post  

processing  in D ISORT  [36].  

Eqs.(6a,b)  imply  the  reciprocity  principle  of  radiative  transfer  and  the  transmission  and  reflection  at  

the  top  are  the  same  as  that  at  the  bottom  for  a  homogeneous  layer.  Eq.(6a)  may  be  solved  using  the  

doubling-adding  method)  [19]  or  in  an  eigensystem.  Matrix  B  can  be  made  symmetric  and  all  its  

eigenvalues  and  eigenvectors  are  real.  This  is  important  because  one  can  use  the  ASYMTX  (fast)  

code,  otherwise  one  needs  to  use  a  different  solution  algorithm  (e.g.  DGEEV  from  LAPACK  Suite  

[37])  for  a  general  matrix  and  now  has  complex  eigensolutions.  For  a  given  homogeneous  layer  of  

optical  depth  δ  and  temperature  �- at  the  top  linearly  changing  to  �T  at  the  bottom,  we  obtain  the  

analytic  expressions  (see  appendix  A)  for  source  function  vectors  in  upward  and  downward  

directions  [38]:  

 

 

#  WA = C( ) ( ) ( ) "X − Y − Z �(�-) − )�(�T) − �(�-),Y + [ \] "[ \̂ (X + Z − Y)DFEG 5 + ! $�  8`X − (-"�_)/ 
a"Y! $ bcD − ZcI9   (8a)  

C( − Y − Z) ( ) ( )W� = X �(�-) + )�(�T) − �(�-),(X − Z) + [ \] "[ \̂ (Y − X − Z)DF EG�5 + (-"�_)/ 
#  a a" " "! $ 8`! $ X − YbcI − Z! $ cD9   (8b)  
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Where � the accumulated optical depth above this layer top. In the CRTM, a layer mean 

temperature is used, instead of level temperatures because NWP model only provides atmospheric 

layer temperatures. For the case, one can set �(�T) = �(�-) = �(�d) in Eqs.(8a-b). 

The layer transmittance matrix is, 

"-Y = 2Scosh(jG) − k2l?ℎ(jG) + cosh(nG) − o2l?ℎ(nG)V (8c) 

and the layer reflection matrix is, 

-Z = T Scosh(jG) + k2l?ℎ(jG) − cosh(nG) − o2l?ℎ(nG)VY (8d) 

with cosh(jG) = Spqr(jG) + exp(−jG)V/2, sinh(jG) = Spqr(jG) − exp(−jG)V/2 
and jT = (L − M)(L + M), nT = (L + M)(L − M), o = (L − M)n"-, k = (L + M)j"-, 

The matrix exponentials can be calculated using either their eigensystems or their Taylor 

expansions. For the scalar radiative transfer in the current CRTM code, we use the solution of the 

eigensystem because it is fast for the symmetric phase matrix. Looking at the CRTM code, one can 

see that it is only necessary to deal with the exponential function as function of negative values (-

eigenvalue times optical depth). The exponential function with positive values can be rearranged as 

the exponential function with negative values in the matrix inversion. Therefore, the expressions in 

transmission and reflection matrices are numerically very stable and accurate. We also noticed that 

the eigen-solution demands strict conditions on the phase matrix. It can occasionally be a problem 

(small negative eigenvalue) if the reconstructed phase matrix after a truncation has very small 

negative values for radiation intensity. The problem may be solved by setting the very small 

negative value to zero. The algorithm ADA and the Taylor expansion often can be tolerant with the 

very small negative values in the reconstructed phase matrix. 
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For a planetary atmosphere, the atmosphere may be divided into n optically homogeneous layers. 

The optical properties (e.g., extinction coefficient, single scattering albedo, and phase matrix) are the 

same within each layer although the temperature may linearly vary within. Again, there are various 

methodologies to integrate homogeneous layers [19]. In this study, the adding method is used for 

integrating the surface and multiple atmospheric layers. The method was applied to flux calculation 

using a two-stream approximation [39]. 

In the following, we briefly describe the adding methodology. We denote xD(y) (upper case) for 

integrated reflection matrix and @A(y) for integrated radiance vector at level k in the upward 

direction. k=n and k=0 represent the surface level and the top of the atmosphere, respectively. The 

adding method starts from the surface without an atmosphere. At the surface, xD(?) is the surface 

reflection matrix and @A(?) equals the surface emissivity vector multiplied by the Planck function at 

the surface temperature and from surface reflected solar radiation. The upward reflection matrix and 

radiance at the new level can be obtained by adding one layer from the present level: 

xD(y − 1) = Z(y) + Y(y)SX − xD(y)Z(y)V"-xD(y)Y(y) (9a) "-@A(y − 1) = WA(y) + Y(y)SX − xD(y)Z(y)V SxD(y)W�(y) + @A(y)V (9b) 

Where lower case Y(y), Z(y), W(y) are layer transmission matrix, reflection matrix, and source 

vector (see Eqs.(8a-d). The physical meaning of equation (9) is obvious. The first term on the right 

side of Eq.(9a) is the reflectance of the layer to be added. The second term on the right side of 

Eq.(9a) is the reflectance due to the radiation from the new level transmitted to and multiple 

reflected by the present level and then transmitted back to the new level. The three terms on the right 

side of Eq.(9b) represent the upward layer source, from the present level reflected layer downward 

source, and from the present level transmitted upward radiance, respectively. The upward radiance 

@A(0) at the top of the atmosphere can be obtained by looping the index from k=n to k=1 and adding 
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the contribution from cosmic background radiance (Planck function at the temperature of 2.7 

Kelvin) vector @{|}, the total radiance at the top of the atmosphere will be 

@A = @A(0) + xD(0)@{|} (9c) 

Therefore, Eqs.(8a-d) provide the analytic expression for layer source function vectors, 

transmittance matrix and reflection matrix. Eqs(9a-c) can integrate all layers and return the upwards 

scalar radiance at the top of the atmosphere. In the CRTM, the default solver (AMOM) mainly 

processes matrices (n_Angles by n_Angles) and vectors (n_Angles) manipulation where n_Angles 

represents the number of discrete angles. 

3.2 Vectorized Radiative Transfer 

The vectorized radiative transfer equation is the same as the scalar radiative transfer except using the 

Stokes vector (with 4 components: radiance, polarization difference, the plane of polarization and 

the ellipticity of the electromagnetic wave) to replace intensity. Single phase function element will 

be replaced by a 4 by 4 matrix, which may destroy the symmetry used in the scalar radiative transfer. 

Generally speaking, the reciprocity principle (see Eqs.(5a-b) is no longer valid, which means that the 

transmittance matrix at the layer top is different from the transmittance at the bottom. This is the 

same true for the reflection matrix. As noted by Siewert [40], both complex variable and real 

variable eigensolutions may now be present. Left and right eigenvectors will be used. The 

eigensolver module ASYMTX [36] [41] cannot be used for a general matrix. The complex-variable 

eigensolver DGEEV from the LAPACK [37] may be used instead. The analytic expressions for the 

layer transmittance matrix, reflection matrix, and source vectors are no longer valid either. This 

would require substantial change to the CRTM code. Fortunately, we found that the phase function 

(scalar) symmetry Eq.(5a-b) can be retained for the phase matrix (vectorized) by just changing the 
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sign  for  the  third  and  the  fourth  Stokes  components  in  the  downward  direction  as  Spurr  [11]  did.  

Using  bold  letters  for  matrices  and  vectors,  Eq.(1)  can  be  rewritten  for  the  vectorized  radiative  

transfer  in t he  case  of  a  macroscopically  isotropic  and  mirror-symmetric  medium  [42]:  

 

 

( ~) T� � �@ �,*, ( ) � -= @ �, μ, � − � � �(�, μ, �,  μ�, �� )@(�,  μ�, ��)μ��μ ��� � − �(�, μ, �,−μ�, �  �� �� � "- �) 
(10a)  

where  

( 1 ��-- �, μ, �, −μ�, ��)�0 � ( �, μ, �, −μ , � ) �# �( "�, μ, �, μ�, � − �)�(� � � +  ��  � -T ��) = (1 ) � � ! $0 ( )  � �, μ, �, −μ , �   (10b)  �� � � -� � �0 ��-�( �, μ, �, −μ�, ��)� 
and   

%--(�) %-T(�) � 0 0 �� %-T(�) %TT(�) 0 0 � = �(� − � �K) �(−�% ( J) �) % (�)   (10c)  � 0 0 ��� ��� 0 0 −%��(�) %��(�)� 
P  is  the  phase  matrix,  a  product  between th e  scattering  matrix  n(�) and r otation m atrices  �.  The  

rotation a ngle  �J  (�K)  is  the  angle  between s cattering  plane  and th e  meridional  plane  containing  the  

incoming  ray  (outgoing  ray).   For  spherical  particles,  we  can h ave  %-- = %TT  and  %�� = %��.  In  

radiative  transfer  calculations,  incoming  radiation  needs  to b e  transformed f rom  the  meridian p lane  

to t he  scattering  plane.  After  computing  scattering  term,  radiation n eeds  to b e  transformed b ack  to  

the  meridional  plane  again.  The  meridional  plane  contains  z-axis  and t he  direction o f  

electromagnetic  wave.  The  scattering  plane  is  composed o f  incoming a nd  outgoing  vectors.  Electric  

field v ector  of  horizontally  polarized r adiation is   normal  to t he  meridian p lan w hile  the  vertically  

polarized r adiation i s  parallel  to t he  plane.    

The  Stokes  vector  may  be  expressed a s  
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V 〈|��|]S .|��|]〉 〈|��|] \"|@ , ��|]〉 = �, � �, � \ C , , 2�!〈� �∗ ��∗ =  � �〉, 2�3〈� �〉F .   T T 
��  and  ��  are  the  vertically  (in t he  meridian p lan)  and  horizontally  (perpendicular  to th e  meridian  

plan)  polarized c omponents  of  electric  fields.  The  angle  brackets  denote  the  ensemble  average  and  

the  asterisk  denotes  the  complex  conjugate.  Applying  the  reflector  operator,  the  vertically  polarized  

component  remains  the  same  while  the  horizontally  polarized c omponent  changes  a  sign w hen t he  

sign o f  the  azimuthal  angle  is  changed [ 43][44][45].  Therefore,  the  first  two  components  are  even  

function a nd th e  third a nd th e  fourth c omponents  odd f unction.  

 

There  are  two b oundary  conditions  needed f or  the  radiative  transfer  solution.  The  downward  

radiation a t  the  top i s  just  cosmic  background  radiation w hile  solar  incoming  radiation c an b e  treated  

as  diffuse  radiation b y  the  atmosphere  and s urface.  That  is  

10@(0, −μ, �) = �(� = 2.73  ) � � 0   (11a)  0
At  the  surface,   

10( � -{ ) T@ � , μ, � = ¡(μ)�( �{ ) � � + � � � Z (μ, �, − μ�, ��)@( �{, − μ�, ��)μ��μ���� +0 �� � �0 �#Z μ, �, −μ , � �� ¢ ( )  "� ! $�    (11b)  �� 
where  λ  is  a  geometrical  factor  for  pseudo-spherical  beam  attenuation.  The  azimuth  and  zenith  

angles  are  generally  coupled.  The  azimuthal  dependence  can  be  separated  by  use  of  the  Fourier  

transformation  for  azimuthal  angles.  Since  the  first  two  components  of  the  Stokes  vector  are  even  

functions  and  the  last  two  components  of  the  Stokes  vector  are  odd  functions,  The  phase  matrix,  the  
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source  function,  and  the  Stokes  vector  may  be  expanded  as  a  series  of  cosine  and  sine  functions  as  

follows:  

£ ( ' )�,* ,*+,� �, μ, �,  μ�, ��) = ∑ 4 (56� cos ( 3(�� − �)) + �{5(�, μ, μ�)sin( 3(�� − �))   (12a)  -./  ( @( �, μ, �) = ∑4 �¤ ( �, μ)012 (3(� − �)) + �{56� 5 � 5( �, μ)2l? (3(�� − �))   (12b)  �( �, μ, �) = ∑456� �¤ � 1  ) + �{5( , μ)0 2 (3(�� − �) 5( �, μ)2l? (3(�� − �))   (12c)  

The  Fourier  components  of  the  phase  matrix  have  some  special  properties.  For  spherical  particles  or  

randomly  oriented  non-spherical  particles,  the  sub-matrix  off  diagonal  has  only  a  non-zero  sine  part,  

whereas  the  sub-matrix  diagonal  has  only  a  non-zero  cosine  part  [40].  Substituting  Eqs.(12a-c)  into  

Eqs.(10a-b)  and  comparing th e  cosine  and  sine  terms  of  equal  order  for  the  first  two  and  the  last  two  

components  of  the  Stokes  vector  respectively,  we  have  

� �@¥(�,*) = @¥( �, μ) − �� - -� � � � � � � � �� ¥( �, μ, μ )@¥( �, μ )�μ −�� �¥( �, μ, −μ )@¥( �, −μ )�μ −�¥( �, μ, −μ� �)   (13a)  

−� � @¥(�,"*) = @¥( �, −μ) − �� 
- -� � � � � � � � �� ¥( �, −μ, μ )@¥( �, μ )�μ −�� �¥( �, −μ,−μ )@¥( �, −μ )�μ −� ( �, −μ,−μ ) (13b)  � ¥ �

where S�¤ @5 = 5, �¤ {5, �5, �{5V\  (superscript  c  for  cosine  mode  and s   for  sine  mode).  The  harmonic  

mode  of  the  phase  matrix c an a lso b e  represented  as  

�¥( �, μ, μ�) = - T�� SX0123(� − ��) − ¦2l?3(� − ��)V�( �, μ, �,  μ�, ��)���   (14a)  T� �
with th e  unit  matrix  X = �l>§S1,1,1,1V and t he  diagonal  matrix   ¦ = �l>§S1,1, −1,−1V.  The  

Fourier  component  of  the  phase  matrix  can b e  calculated a fter  [40],   

� � ∑4 5 5 �¥( , μ, μ�) = 56¨ �¨ (μ)©¨( �)�¨ (μ )   (14b)  

where   
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�5(μ 0 � ¨ ) 0 0 �5 � 0 �5̈ (μ) −�5(μ) 0 �¨ (μ) = ¨ �   (15a)  � 0 −�5(μ) �5̈(μ) 0 �¨ � 0 0 0 �5̈(μ)� 
and t he  “Greek m atrix c oefficients”  are:  

R ̈ « ̈ 0 0«¨ N¨ 0 0 ©¨ = ª ® ¬ −   (15b)  0 0 ¨ ¨ 0 0 ¨ G ̈ 
It  is  obvious  that  © ̈  is  no l onger  symmetric  if  ¨ ≠ 0.  Rayleigh s catterings  is  an e xception a nd  

symmetric  because  of   ¨ = 0.  Noticing  the  relationship [ 40],  

�5 ¨"5 5¨ (−μ) = (−1) ¦�¨ (μ)¦ ,  (16a)  

we  can o btain  

¦�¥( �, −μ, μ�) = �¥( �, μ, −μ�)¦ ,  (16b)  �¥( �, μ, μ�) = ¦�¥( �, −μ,−μ�)¦ .  (16c)  

The  remaining  integration o ver  µ  for  each  Fourier  component  or  harmonic  component  in E qs.(13a-

b)  can b e  replaced b y  a  discrete  sum [ 38]  using  Gaussian q uadrature  points  �7  and c orresponding  

weights  =7.  
�@ ¥ (�,° ± )�� @¥( �, �7) �¥) �, � , � , � ) �, � , −� , @ ) �, � ,� 7 �"� @ (�,"° ) � = 8 9 − �∑ 4 : 7 ; ¥ 7 ; < : ¥ ; <= −¥ ± @¥( �, −�7) ;6- �¥) �, −�7, �;, �¥) �, −�7, −�;, @¥) �, −� ;;, ���¥( �, �7, −μ�)8 9   (17)  �¥( �, −�7, −μ�) 

 

 

 

Eq.(17)  can b e  rewritten  in a   form  that  we  can a pply  reciprocity  principle  as  documented in [  4][6].  

Multiplying  the  downward r adiance  vector  by  the  D  matrix  and u sing  Eqs.(16b-c),  Eq.(17)  can b e  

rewritten a s:  
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�@¥(�,°±) � @ (�, � )�7 � � ¥ 7 "�¦@ �¥(�,"°±) = 8 9 − ¦@¥( �, −�7)���¥) �, �7, �;, � �, , − ;,¦ � , 4 ¥) �7 � @¥) , �; �¥( �, �7, −μ ) �∑;6- : < : <= − 8 � 9 (18)  �¥) �, �7, −�;,¦ �¥) �, �7, �;, ¦@¥) �, −�;, ; ¦�¥( �, −�7, −μ�) 
We  can n ow  redefine   

@� 5( �, −�7) = ¦@¥( �, −�7)   (19a)  ��5) �, �7, −�;, = �¥) �, �7, −�;,¦   (19b)  �� 5( �, −�7, −μ�) = ¦�¥( �, −�7 , −μ�)   (19c)  �@ ¥ (�,° ± )�� @¥( �, �7) � ) �, � , � , �� ) �, � , −� , @ ) �, � ,�7 � + � = 8 � 9 − �∑4;6- : ¥ 7 ; 5 7 ; < : ¥ ; <= −"� @(( " − ; �, °±) @ )�, �7 , − �¥(�, �7) ��5 �;, �¥)�, �7 , �;, @5 )�, −�;,���8 ¥( �, �7, −μ�)� 9 � � − )   ( )  5( , � 27 , −μ 0�

 

 

Therefore,  Eq.(20)  (same  form  as  Eq.(5c))  can  be  rewritten  in  the  same  form  as  for  the  scalar  

radiative  transfer  (see  Eq.(6a)  and  Eq.(7c))  by  increasing  number  of  elements  from  n_Angles  to  

n_Stokes  x  n_Angles  where  n_Stokes  represents  the  number  of  Stokes  components  (<=  4).  It  implies  

that  the  reciprocity  principle  can  also  be  valid  for  vectorized  radiative  transfer  so  that  transmission  

and  reflection  matrices  from  the  top  and  from  the  bottom  of  a  homogeneous  layer  can  be  the  same.  

This  considerably  simplifies  code  implementation  and  saves  half  of  the  computational  time  

associated  with  scattering.  The  adding  method  of  the  CRTM  ADA  [19]  can  be  used  for  vectorized  

radiative  transfer  by  increasing  the  number  of  elements  from n _Angles  to n _Stokes  x  n_Angles.  

However,  the  solution  is  complicated  for  the  current  CRTM  AMOM  where  an  eigensolution  is  used.  

The  phase  matrix  itself  for  vectorized  radiative  transfer  is  generally  not  symmetric  although  the  

reciprocity  principle  can  be  valid.  Without  the  symmetry,  the  eigenvalues  and  eigenvectors  are  

complex.  One  may  use  the  LAPACK  solver  DGEEV  instead  of  using  ASYMTX  for  a  symmetric  
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phase matrix in the current CRTM AMOM. But, the change from real eigenvalues and eigenvectors 

to complex eigenvalues and eigenvectors would demand a lot of code changes for the CRTM model 

in particular for the tangent-linear and adjoint parts. The CRTM doubling-adding algorithm is 

simple, stable, and accurate but it is about slower than the CRTM AMOM for scalar radiative 

transfer. For a layer optical depth of 100, we noticed that the doubling-adding algorithm spends 

more than 80% its iterations (or computation) for the optical depth range from 0 to 0.5 and only less 

than 20% of its computation time is spent for the optical depth from 0.5 up to 128. Therefore, it can 

greatly improve the efficiency if we can replace the doubling-adding for the first range of the optical 

depth from 0 to 0.5 (80% CPU time). We can use a Taylor expansion to calculate the transmission 

and reflection for the first part of the optical depth (actually product of the optical depth and the 

maximal absolute value of the phase matrix) to 0.5, then use the doubling-adding algorithm for the 

remaining part. This approach uses a similar concept to the iterated squaring method for the 

exponential matrix [46]. The main difference is that our Taylor expansions for transmission and 

reflection matrices are more complicated than the expansion for exponential matrix and the 

doubling-adding is also more complicated than the doubling exponential matrix. 

The Taylor expansion calculation is stable, fast, and accurate for a small optical depth. The 

doubling-adding iteration is less than 8 times for optical depth from 0.5 up to 128. The combined 

Taylor expansion and doubling-adding techniques are computationally efficient and numerically 

very stable and accurate. The Taylor expansion for the transmission and reflection matrices for 

Eqs.(8c-d) can be written as 

cosh(jG) − k2l?ℎ(jG) + cosh(nG) − o2l?ℎ(nG) = ∑µ¶ S(L"M)(L.M)V(²K².S)(!L.M)(L"M)V² ´K² − ² µ¶ (L.M)S(L"M)(L.M)V².(L"M)S(L.M)(L"M)V ´K².J ∑ (K².J)! (21a) 
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cosh(jG) + k2l?ℎ(jG) − cosh(nG) − o2l?ℎ(nG) = ∑µ¶ S(L"M)(L.M)V(²K² "S)(!L.M)(L"M)V² ´K² + ²∑µ¶ (L.M)S(L"M)(L.M)V².(L"M)S(L.M)(L"M)V ´K².J (21b) (K².J)! 
Using N = 5 is sufficient for the small value of the first range of the optical depth. 

4. PHASE MATRIX 

The phase matrix is an important part in radiative transfer. It governs intensity scattering and 

polarization. Because of polarization, one has to transform the incoming Stokes vector to the 

scattering plane by multiplying rotation matrices. It requires significant efforts to calculate the phase 

matrix in particular for non-spherical particles [47]. Fortunately, there are several codes publicly 

available for calculation the phase matrices [48][49]. We have applied the T-matrix code to compute 

the phase matrix for dust of spheroids. Invariant imbedding T-matrix method and the separation of 

variables method have been applied to large non-spherical inhomogeneous particles [50]. Tabulated 

scattering matrices in generalized spherical functions are also available [51]. As long as one has the 

data of six elements of scattering matrices, one can use the Legendre expansion coefficients through 

the integration over azimuth angles [10] for each Fourier component. One can also use Greek matrix 

coefficients to get around the integration over azimuth angles. In the CRTM, we use the Greek 

matrix coefficients. For the benchmark experiments in the following section, we choose two phase 

matrices for: Rayleigh scattering and the scattering in an atmosphere of randomly oriented oblate 

spheroids with aspect ratio 1.999987, size parameter 3 and index of refraction (1.53,0.006i )[52]. 

Rayleigh scattering is for molecular scattering or for a very small particle in comparison to the 

electromagnetic wavelength. For example the radius of an oxygen molecule is about 0.2 nanometer 

(nm), which is much smaller than Ultraviolet (UV) wavelength (sub-micrometer) and microwave 
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wavelength  (millimeter  to  centimeter)  we  studied  here.   For  both  Rayleigh  scattering  phase  matrix  is  

symmetric.  The  phase  matrix  is  symmetric  if  the  Greek  coefficient  ¨ = 0.  The  second  phase  

function  is  more  generic  and  widely  used  in  the  benchmark  experiments  [40][11].  Table  1a  lists  the  

Legendre  expansion  coefficients  for  Rayleigh  scattering  that  will  be  used  in d oubling-adding m ethod  

[10].  Table  1b  is  the  Greek  matrix  coefficients  for  Rayleigh  scattering  that  are  used  in  VLIDORT,  

extended  CRTM  ADA  and  AMOM  algorithms.  The  same  is  true  in  tables  2a  and  2b  for  the  

Legendre  expansion c oefficients  and G reek m atrix  coefficients.  

 

 

 

There  are  few  analytic  phase  functions  used  in  real  applications.  With  specific  interest,  we  discuss  

three  analytic  phase  functions  here.  The  phase  functions  are  not  used  for  benchmark  experiment  

below.  Rayleigh  phase  function  is  important  for  scattering  of  very  small  particles.  Henyey-

Greenstein  (HG)  phase  function  can  catch  up  the  first  moment  (e.g.  the  asymmetry  factor  g)  and  can  

only  be  used  for  scalar  radiative  transfer.  The  HG  phase  function  may  be  a  good  approximation  

when  the  asymmetry  is  a  dominant  feature.  Obviously,  HG  is  only  constant  for  g=0,  which  cannot  

represent  Rayleigh  scattering.  We  found  that  combining  Rayleigh  and  HG  phase  function  can  work  

well  for  some  applications.  Henyey-Greenstein  and  Rayleigh  (HG-Rayleigh)  scattering  [53]  leads  to  

an  analytic  function  that  may  be  used  for  a  wake  asymmetric  scattering  in  microwave  range,  good  

for  the  Mie  size  parameter  smaller  or  comparable  to e lectromagnetic  wavelength.   

For  polarimetric  radiation,  the  HG-Rayleigh s cattering  matrix  can b e  written a s  

1 + 012T� −1 + 012T� 0 0T T�(�, §) = T -"·] −1 + 012 � 1 + 012 � 0 0
   T.·] ª ® (22a) (-.·]"T·¤¸{(¹))º/] 0 0 012(�) 0 0 0 0 012(�) 
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where  G  is  called a n  effective  asymmetry  factor  that  can b e  calculated f rom th e  original  asymmetry  

factor  g:  

» = ¼ § + º ¾- ¿-� § + T¼� § Á + ∆ − º ¾ ∆ − - ¿-�� § + T¼� √ √ §�Á   (22b)  ½ T ½ ÀT½ T ½ ÀT½T � 
here  ∆= C- ( -� § + T¼� 

w §�F + C- ( 4 − T¼ §T)F .  (22c)  T ½ ÀT½ � TÀ
Using  the  effective  asymmetry  factor,  one  can  recover  the  original  asymmetry  factor.  Tables  3a  and  

3b  are  the  Legendre  expansion  coefficients  and  Greek  matrix  coefficients  for  the  phase  function  at  

183  GHz  derived  for  randomly  oriented  ice  crystals  with  a  maximum  size  of  300  µm  and  a  width  of  

100  µm  [14].  The  volume  equivalent  radius  of  a  sphere  is  90  µm  and  the  asymmetry  factor  equals  

0.027.  We  compare  Rayleigh,  Henyey-Greenstein,  HG-Rayleigh  functions  with  the  original  phase  

function.  As  shown  in  Figure  2a,  the  phase  element  for  the  intensity  (see  black  line)  has  larger  

forward  but  smaller  backward  parts  in  comparison  to  the  Rayleigh  scattering ( see  black d ashed  line).  

The  original  phase  function  is  substantially d ifferent  from  the  Henyey-Greenstein  phase  function  for  

the  same  asymmetry  factor  (see  red  line).   This  indicates  again  that  HG  phase  function  is  not  

appropriate  for  weak a symmetry  scattering.   The  HG-Rayleigh p hase  function ( see  green l ine)  agrees  

with  the  original  phase  function  extremely  well.  The  phase  element  for  linear  polarization  is  given  in  

Figure  2b.  The  curves  of  the  original,  Rayleigh,  and  HG-Rayleigh  phase  functions  in  Figure  2b  are  

almost  the  same.  Using  HG-Rayleigh  phase  function,  the  calculated  brightness  temperatures  agree  

well  with t hose  using  the  original  phase  function [ 53].   

In  the  CRTM,  we  actually  use  the  phase  function  data  of  non-spherical  ice  clouds  for  infrared  and  

UV  and  visible  sensors  [54].  We  use  the  formula  from  [55]  to  compute  the  Greek  matrix  coefficients  

from  the  phase  function  data.   
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5. BENCHMARK EXPERIMENT 

In the benchmark experiments, we use the doubling-adding (DA) method [10], VLIDORT [11], the 

extended CRTM ADA [19], and the extended CRTM AMOM [20]. The DA method [10] was 

developed many years ago, but the solution of the method is still very stable and accurate. 

VLIDORT can compute both radiance and its Jacobian and contains many functions that are very 

useful for many applications. VLIDORT can be used for full Stokes calculations and achieves very 

high accuracy. The CRTM ADA [19] was for a scalar radiative transfer. We easily extended the 

CRTM ADA to fully vectorized radiative transfer by changing the dimension size from n_Angles to 

n_Angles x n_Stokes, because Eq.(20) satisfies the radiative reciprocity principle. The extension of 

CRTM ADA works well for both scalar and vectorized radiative transfer. Same did for the CRTM 

AMOM. But, it works only for the case  = 0 in the Greek matrix coefficients, for example for ¨ 
Rayleigh scattering. For Rayleigh scattering, CRTM ADA is about four times slower than that 

AMOM using the real eigenvalues and real eigenvectors. For general cases ( ≠ 0) where matrix is ¨ 
not symmetric, the extended CRTM AMOM is not applicable. We will use the Taylor expansion 

(see Eqs.(21a-b) with the doubling-adding algorithm. This method will keep the solver simple, 

stable, and accurate, and about 2 to 3 times faster than CRTM ADA. 

For simplicity, we choose one optically homogeneous layer over a Lambertian surface. The surface 

albedo is set to 0.25. Solar zenith angle is set to 36.8699 degree (or cosine of the solar zenith angle 

0.8) and azimuth angle is set to zero degree. The viewing zenith angle is set to 50.21 degree and the 

viewing azimuth angle is set to 90 degree. The solar flux is normalized to π. The surface temperature 

and atmospheric layer temperature are set 300 K. The central wavelength of channel 1 of GOES-16, 

470 nm, is used. This configuration is one of the cases of Coulson et al. [56]. DA [10], CRTM ADA 
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and CRTM AMOM add the viewing zenith angle associated with a zero weight into Gauss 

quadrature. While VLIDORT applies a post processing step to calculate the solution at the given 

zenith angle. Both methods are one kind of interpolation for the given zenith angle among solutions 

at Gaussian quadrature points. 

The Rayleigh scattering phase function and the phase function for scattering in an atmosphere of 

randomly oriented oblate spheroids [52] are used. Rayleigh scattering is for molecular scattering or 

for a small particle in comparison to electromagnetic wavelength. The Greek matrix coefficients in 

Eq.(15b) are symmetric for Rayleigh scattering ( = 0 ). Table 4a is the Rayleigh scattering for an ¨ 
optical depth of 0.1 using four streams. The four streams (two in upward and two in downward 

directions) should be good for the flux calculation for Rayleigh scatterings that only have three 

expansion terms for its phase matrix. Table 4b is for the same case but using 16 streams. Same 

applies to Table 5a and 5b but for an optical depth of 1. As one can see from Tables 4a and 4b that 

results among all four solvers (DA, VLIDORT, CRTM ADA, and CRTM AMOM) agree well. One 

may also notice that the relative difference in Q (the second Stokes component) between using four 

and sixteen streams can be large. This may be due to the fact using the upward solutions from two 

Gaussian quadrature points is not sufficient in the interpolation for non-linear function Q at the 

given angle. 

The second phase function is more generic and widely used in the benchmark experiment [11][40]. 

Each element of the phase function has 12 terms or uses 12 expansion coefficients. Results from all 

the four radiative transfer solvers agree very well for various optical depths. Tables 6, 7, 8, and 9 are 

for the optical depth of 0.1, 1.0, 10.0, and 100, respectively. All four solvers generate accurate 

results. 
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Computational efficiency or speed is certainly important. We realize that such an assessment 

depends on the applications, computers, computer operation system and compilers. The comparisons 

we show here are just for simple cases used for tables 6, 7, 8, and 9. For the same algorithm, 

programming skills may play an important role on the computational efficiency. We use single CPU 

and GFORTRAN Red Hat 4.8.5-36. Table 10 lists the CPU time difference between calling 

CPU_Time at the end and the beginning of the RT model code. As one can see that the CPU time 

usage for VLIDORT is roughly constant for all optical depths. The CPU time for the vectorized 

CRTM AMOM depends on the optical depth and increases with optical depths. The CPU time 

between VLIDORT and CRTM AMOM is very close when optical depth increases to 1000. 

6. DISCUSSION 

In this paper, we discussed the extension of the CRTM solvers ADA and AMOM for vectorized 

radiative transfer. Generally speaking, Greek matrix coefficients are not symmetric which results in 

a non-symmetric phase matrix and the vectorized radiative transfer doesn’t hold reciprocity 

principle. Without the reciprocity principle, one has to calculate transmission and reflection matrices 

at the layer top and bottom separately even for a homogeneous layer. This requires more coding and 

degrades the computational efficiency. Fortunately, by changing the sign of the third and the fourth 

Stokes components only in the downward direction as Spurr [11] did, we can get the same form of 

radiative transfer for both scalar and vectorized radiative transfer, which confirms the reciprocity 

principle. With the reciprocity principle, we extend the CRTM ADA to vectorized radiative transfer 

just by changing the dimension size from n_Angles to n_Angles x n_Stokes and save about 50% 

computational time in the radiative transfer solver part. This also applies to the CRTM AMOM. 
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However, the extended CRTM AMOM is only applicable to the Greek matrix coefficient  = 0 . ¨ 
The extended CRTM AMOM can also be used for the first two components (I and Q or vertically 

and horizontally polarized brightness temperatures �� and ��) that is useful for many microwave 

radiative transfer applications. For the cases of  ≠ 0 , we use the combined a Taylor expansion and ¨ 
a doubling-adding method in the CRTM AMOM which are computationally efficient. 

We can use a Taylor expansion to calculate the transmission and reflection for an initial optical 

depth (or base value) (actual product of the optical and the maximal value of the phase matrix), then 

use the doubling-adding algorithm for the rest part. The base value is small but much larger than the 

base value ( ~ 10"À )used in ADA. CRTM AMOM requires additional 8 DA iterations for the 

optical depth less than 128, instead of 34 iterations needed by CRTM ADA. That is why the 

combined Taylor and DA method is faster than CRTM ADA. Certainly, the doubling-adding 

algorithm is not required if the optical depth is less than the base value. This method is simple and 

only requires small effort in coding for radiative transfer forward, tangent linear, adjoint, and K-

matrix or jacobian modules. The Taylor expansion convergences fast for a small base value of the 

optical depth. The computational efficiency may be comparable or somewhat slow to solving a 

complex eigensystem that can also be used for the CRTM AMOM in the future. We have compared 

CRTM AMOM using Taylor and DA combination against the solver part of VLIDORT and found 

that the computational efficiency between the two solvers is comparable. 

As discussed in the section of benchmark experiments, all solvers (DA, VLIDORT, CRTM ADA, 

and CRTM AMOM) are accurate. Extension rather than the implementation of other existing solver 

is due to considerations of heritage, cost, and maintenance. Another factor is that the analytic 
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expressions for the transmission, reflection, and source function may be interesting to the 

community. 

One also needs to realize that while the computational capability of radiative transfer calculations 

increases quickly, the applications demand computational resource much more rapidly. Thirty years 

ago, the advanced microwave sounder unit (AMSU) on NOAA-15 had a spatial resolution of about 

16 km at nadir, a much higher resolution than the gridded resolution of global numerical prediction 

model. Today, the gridded resolution of a global prediction model is better than that of the current 

AMSU and Advanced Technology Microwave Sounder (ATMS) at nadir, much better at off-nadir 

and may demand radiative transfer calculations in three dimensions. For microwave instruments 

with a spatial resolution of 5 km or better, three-dimensional radiative transfer model needs to be 

applied to take the radiation leaking from sides into account. It would be a great challenge to use 3D 

radiative transfer calculations in operations [36]. It requires tremendous work to write tangent-linear 

and adjoint codes for three-dimensional radiative transfer models. Some software is available online 

(e.g. http://www-sop.inria.fr/ecuador/tapenade/distrib/1903/taplsnGRgL2/README.html ) to 

translate the forward code to tangent-linear code and adjoint code. We tried to use the software 

Tapenade to do the conversion for ASYMTX. It did help for the tangent-linear code, but not 

successful for the adjoint code. The software is still being currently developed. Artificial Intelligence 

(AI) or deep machine learning could be one of the solutions which is about 1000 times faster than 

rigorous radiative transfer calculations and the tangent linear and adjoint parts are straightforward. 
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Appendix  A  

This  appendix  shows  how  to  derive  the  analytic  expressions  of  layer  transmittance  matrix,  reflection  

matrix,  and  source  vectors  in  Eqs.(8a-d).  For  an  atmospheric  layer  having  a  top  temperature  of   

�-( �� = 0) and a   bottom  temperature  of  �T( �� = G),  we  can h ave  (see  Eq.(6a)):  

� @A @ "A D -E #" D"-H8 9 = −B 8 9 − (1 − �)�(�) C D 9 ) "- F G $�5 − �� !  8   (A1  �� @ @ −D E � "� � −D -HI(�(�) �( + [(= � ) \])"[ \̂ ) � = Å + Å � Where  - � � -�   (A2)  / 
Multiplying  !Æ�+  on b oth s ides  of  Eq.(A1)  and in tegrating  from  zero  to t he  layer  optical  depth  δ,  one  

can h ave   

�A(G) "Æ/ �A(0) X 0 D"-E8 9 = ! 8 9 − (1 − �) ÇÅ-G + :C F − !"Æ/< (Å − Å Æ"-)È Æ"- C F G − ��(G) ��(0) 0 X � - −D"-E �5 
 # a " " c ! $ D É! $ − !"Æ/Ê 8 9 c   (A3)  Ic "-8 D9 = −�� - D

 (B − )"- H
where 8 Dc   (A4)  � *I  −D"- 9 HI� and  �  the  accumulated o ptical  depth a bove  this  layer  top.  

Noticing  that  thermal  emission i s  isotropic  and i t  only  contributes  to z eroth  Fourier  component  and  

the  zeroth c omponent  of  the  phase  matrix  is  normalized,  one  can d erive  the  following  relationships  

for  the  zeroth c omponent:  
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−D"-E− Ë)Æ"- E(1 C - F   (A5)  D" = C F E E−D"-E(1 − Ë)Æ"T C F = Æ"- E DE C F = - −C F   (A6)  D"-E E -"�_ DE 
Eq.(A3)  can b e  rewritten  as:  

� (G) 1 8 A 9 = !"Æ/ � (0) E X 0 E −DE 8 A 9 + Å-G C F + ÌC F − !"Æ/ Í ÉÅ C F − Å� (G) � (0) E 0 X � E 1 − �§ - C FÊ  � � DE 
 # a " " c

            −! $  É! $ − !"Æ/Ê 8 D9 c   (A7)  I
On  the  other  hand,  we  can  also  write  the  solution  based  on  the  interaction  principle.  For  the  scalar  

radiative  transfer,  reciprocity  principle  is  valid  which  implies  that  reflection  and  transmittance  

matrices  from  the  layer  top  are  identical  to  that  from  the  layer  bottom.   Therefore,  upward  radiation  

at  the  layer  top  is  composed  of  transmitted  upward  radiation  from  the  layer  bottom,  reflected  

downward  radiation  at  the  layer  top,  and  upward  layer  source  radiation  from  the  layer  top.  

Downward  radiation  at  the  layer  bottom  is  composed  of  transmitted  downward  radiation  from  the  

layer  top,  reflected  upward  radiation  at  the  layer  bottom,  and  downward  layer  source  radiation  from  

the  layer  bottom.  That  is  [58]:  

�A(0) Y Î � (G) �8 9 = C F 8 A 9 + 8 A9 �   � (0)  (A8) �(G) Î Y � ��
Eq.(A8)  can b e  rewritten  (see  Eq.  (A7)  of  [13]   as:  

�A(G) Y 0 "- X −Î � (0) Y 0 "- −�8 9 = C F C F 8 A 9 + C F 8 A9 ��(G) �    0 Y �(0) � (A9) −Z X −Z X �
By  comparing  Eq.(A3)  with E q.(A9),  we  obtain  

Y 0 "- X −ÎC F C F = !"Æ/   (A10)  −Z X 0 Y
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Or  

X −Z "- Y 0 X ZY"- Y 0 Y − ZY"-!Æ/ Z ZY"-= C F C F = C F C F = C F   (A11)  ¶ Y −Z X ¶ Y"- −Z X Y"-Z Y"-
 

Eq.(A11)  is  the  same  as  Eq.(2.14)  of  [59].  From  Eq.(A11),  we  can  obtain  the  analytic  expression  for  

the  transmittance  matrix  (Eq.(8c))  and  the  reflection  matrix  [60].  By  comparing  source  terms  

between E q.(A7)  and E q.(A9),  one  can h ave  

Y 0 "- −�A E "Æ/ X 0 E - −DE  # a " "C F 8 9 = Å -G C F + Ì! − C FÍ ÌÅ � C F − Å C FÍ − ! $  É! $ −−Z X � --� E 0 X E "Ï_ DE 
"Æ/ c! Ê 8 D9  c   (A12)  I

 

Using  Eq.(10)  and r earranging  terms  in E q.(A12),  we  can d erive  the  analytic  expression f or  layer  

source  vectors  in E q.(8a)  and E q.(8b).   
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Figure Caption 

Figure 1. An interface diagram of the Community Radiative Transfer Model. The modules in the 

public interfaces (upper dashed box) are accessed by users. The modules in the bottom dashed box 

are for developers. 

Figure 2. Comparisons of the phase function (a), linear polarization of the phase function (b) using 

the original (black line), HG-Rayleigh (blue line), Rayleigh (yellow line), and Henyey-Greenstein 

phase functions (red line). There is no polarization in the HG. 
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Figure 1. An interface diagram of the Community Radiative Transfer Model. The modules in the 

public interfaces (upper dashed box) are accessed by users. The modules in the bottom dashed box 

are for developers. 
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Figure 2. Comparisons of the phase function (a), linear polarization of the phase function (b) using 

the original (black line), HG-Rayleigh (green line), Rayleigh (black dashed line), and Henyey-

Greenstein phase functions (red line). There is no polarization in the HG. 
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Table 1a. Legendre expansion coefficients for Rayleigh scattering. 

%-- %TT %�� %�� %-T %�� 
0 1.0 1.0 0.0 0.0 -0.5 0.0 

1 0.0 0.0 1.5 1.5 0.0 0.0 

2 0.5 0.5 0.0 0.0 0.5 0.0 

Table 1b. Greek matrix coefficients for Rayleigh scattering 

%-- %TT %�� %�� %-T %�� 
0 1.0 0.0 0.0 0.0 0.0 0.0 

1 0.0 0.0 0.0 1.5 0.0 0.0 

2 0.5 3.0 0.0 0.0 √6/2 0.0 
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Table 2a. . Legendre expansion coefficients for an atmosphere of randomly oriented oblate 

spheroids. 

%-- %TT %�� %�� %-T %�� 
0 1.0 0.0 0.929287 0.0 0.967924 0.915207 

1 2.104031 0.0 2.118711 0.0 2.073916 2.095727 

2 2.095158 -0.116688 3.615946 0.065456 3.726079 2.008624 

3 1.414939 -0.209370 2.240516 0.221658 2.208680 1.436545 

4 0.703593 -0.227137 1.139473 0.097752 1.190694 0.706244 

5 0.235001 -0.144524 0.365605 0.052458 0.391203 0.238475 

6 0.064039 -0.052640 0.082779 0.009239 0.105556 0.056448 

7 0.012837 -0.012400 0.013649 0.001411 0.020484 0.009703 

8 0.002010 -0.002093 0.001721 0.000133 0.003097 0.001267 

9 0.000246 -0.000267 0.000172 0.000011 0.000366 0.000130 

10 0.000024 -0.000027 0.000014 0.000001 0.000035 0.000011 

11 0.000002 -0.000002 0.000001 0.0 0.000003 0.000001 
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Table 2b. Greek matrix coefficients for an atmosphere of randomly oriented oblate spheroids 

%-- %TT %�� %�� %-T %�� 
0 1.0 0.0 0.0 0.915267 0.0 0.0 

1 2.104031 0.0 0.0 0.095727 0.0 0.0 

2 2.095158 3.726079 3.615946 2.008624 -0.116688 0.065456 

3 1.414939 2.202868 2.240516 1.436545 -0.209370 0.221658 

4 0.703593 1.190694 1.139473 0.706244 -0.227137 0.097752 

5 0.235001 0.391203 0.365605 0.238475 -0.144524 0.052458 

6 0.064039 0.105556 0.082779 0.056448 -0.052640 0.009239 

7 0.012837 0.020484 0.013649 0.009703 -0.012400 0.001411 

8 0.002010 0.003097 0.001721 0.001267 -0.002093 0.000133 

9 0.000246 0.000366 0.000172 0.000130 -0.000267 0.000011 

10 0.000024 0.000035 0.000014 0.000011 -0.000027 0.000001 

11 0.000002 0.000003 0.000001 0.000001 -0.000002 0.0 
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Table 3a. . Legendre expansion coefficients for HG-Rayleigh phase matrix. 

%-- %TT %�� %�� %-T %�� 
0 1.0 1.000101 0.041291 0.041291 -0.499556 -0.000064 

1 0.081467 0.081467 1.500544 1.500544 -0.013013 0.000000 

2 0.500993 0.500993 0.053196 0.053196 0.499411 0.000064 

3 0.013024 0.013024 0.000695 0.000695 0.013011 -0.000000 

Table 3b. . Greek matrix coefficients for HG-Rayleigh phase matrix. 

%-- %TT %�� %�� %-T %�� 
0 1.0 0.0 0.0 0.0 0.0 0.041291 

1 0.081467 0.0 0.0 0.0 0.0 1.500544 

2 0.500993 -1.223599 0.145575 0.000156 3.000788 0.053196 

3 0.013024 -0.023758 0.001271 -0.000000 0.043401 0.000695 
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Table 4a. Pure Rayleigh atmosphere of optical depth of 0.1 using 4 streams (2 in upward and 2 in 

downward direction). The solar flux is normalized to π, the solar zenith angle is 36.8699 (the cosine 

of the solar zenith angle is 0.8), and the surface albedo is 0.25. Single scattering albedo is 1.0. 

VLIDORT requires the single scattering is less than 1.0 and we use the single scattering albedo of 

0.99999. The upwelling radiance is for a viewing (zenith) angle of 50.21 degree. 

I Q U V 

DA 0.215409 -0.000316 -0.020898 0.0 

VLIDORT 0.215409 -0.000316 -0.020898 0.0 

ADA 0.215409 -0.000316 -0.020897 0.0 

AMOM 0.215409 -0.000316 -0.020897 0.0 

Table 4b. Same as Table 4a, but using 16 streams 

I Q U V 

DA 0.216527 -0.000214 -0.021456 0.0 

VLIDORT 0.216526 -0.000214 -0.021456 0.0 

ADA 0.216526 -0.000214 -0.021455 0.0 
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AMOM 0.216526 -0.000214 -0.021455 0.0 

Table 5a. Same as Table 4a, but for an optical depth of 1. 

I Q U V 

DA 0.374199 0.008465 -0.124870 0.0 

VLIDORT 0.374189 0.008464 -0.124868 0.0 

ADA 0.374197 0.008467 -0.124864 0.0 

AMOM 0.374196 0.008467 -0.124864 0.0 

Table 5b. Same as Table 5a, but using 16 streams 

I Q U V 

DA 0.372577 0.007767 -0.124787 0.0 

VLIDORT 0.372567 0.007767 -0.124785 0.0 

ADA 0.372575 0.007770 -0.124782 0.0 

AMOM 0.372574 0.007770 -0.124781 0.0 

Coulson et al. 

(1960) 

0.37248 -0.00774 0.12476 0.0 
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Table 6. Same as Table 4b (16 streams), but using the phase function for an atmosphere of randomly 

oriented oblate spheroids. 

I Q U V 

DA 0.200216 0.000149 -0.000396 0.000001 

VLIDORT 0.200215 0.000149 -0.000396 0.000001 

ADA 0.200216 0.000149 -0.000396 0.000001 

AMOM 0.200216 0.000149 -0.000396 0.000001 

Table 7. Same as Table 6, but for an optical depth of 1. 

I Q U V 

DA 0.247890 0.001246 -0.007078 0.000019 

VLIDORT 0.247882 0.001246 -0.007078 0.000019 

ADA 0.247888 0.001246 -0.007077 0.000019 

AMOM 0.247888 0.001246 -0.007077 0.000019 
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Table 8. Same as Table 6, but for an optical depth of 10. 

I Q U V 

DA 0.557838 0.003928 -0.012050 0.000044 

VLIDORT 0.557727 0.003927 -0.012050 0.000044 

ADA 0.557839 0.003928 -0.012050 0.000044 

AMOM 0.557828 0.003928 -0.012050 0.000044 

Table 9. Same as Table 6, but for an optical depth of 100. 

I Q U V 

DA 0.761506 0.003850 -0.012050 0.000044 

VLIDORT 0.760356 0.003850 -0.012050 0.000044 

ADA 0.761511 0.003850 -0.012050 0.000044 

AMOM 0.761395 0.003850 -0.012050 0.000044 
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Table 10. Comparison of CPU time usage between VLIDORT and AMOM. Phase function for an 

atmosphere of randomly oriented oblate spheroids and 16 streams are used. The solar flux is 

normalized to π, the solar zenith angle is 36.8699 (the cosine of the solar zenith angle is 0.8), and the 

surface albedo is 0.25. Single scattering albedo is 1.0. VLIDORT requires the single scattering is 

less than 1.0 and we use the single scattering albedo of 0.99999. The upwelling radiance is for a 

viewing (zenith) angle of 50.21 degree. 

Layer optical depth VLIDORT (seconds) AMOM (seconds) 

100 0.096 0.076 

10 0.096 0.063 

1 0.096 0.054 

0.1 0.095 0.048 
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